New stretchable battery can power wearable electronics

Posted on February 7, 2020Categories blog  Leave a comment on New stretchable battery can power wearable electronics

The adoption of wearable electronics has so far been limited by their need to derive power from bulky, rigid batteries that reduce comfort and may present safety hazards due to chemical leakage or combustion. Researchers have now developed a soft and stretchable battery that relies on a special type of plastic to store power more safely than the flammable formulations used in conventional batteries today.

The adoption of wearable electronics has so far been limited by their need to derive power from bulky, rigid batteries that reduce comfort and may present safety hazards due to chemical leakage or combustion. Researchers have now developed a soft and stretchable battery that relies on a special type of plastic to store power more safely than the flammable formulations used in conventional batteries today.

 

That new yarn? Wearable, washable textile devices are possible with MXene-coated yarns

Posted on February 7, 2020Categories blog  Leave a comment on That new yarn? Wearable, washable textile devices are possible with MXene-coated yarns

Researchers have figured out how to add more conductivity into functional fabric devices, by coating yarns with a 2-dimensional carbon-based material called MXene, to make conductive threads. The group has developed a dip-coating method, similar to the dyeing process, that can produce a conductive yarn strong enough for use in industrial knitting machines and durable enough to make it through wash cycles without degrading.

Researchers have figured out how to add more conductivity into functional fabric devices, by coating yarns with a 2-dimensional carbon-based material called MXene, to make conductive threads. The group has developed a dip-coating method, similar to the dyeing process, that can produce a conductive yarn strong enough for use in industrial knitting machines and durable enough to make it through wash cycles without degrading.

 

AuraRing: Precise Electromagnetic Finger Tracking

Posted on February 7, 2020February 7, 2020Categories blog  Leave a comment on AuraRing: Precise Electromagnetic Finger Tracking

Farshid Salemi Parizi, Eric Whitmire, Shwetak Patel

Wearable computing platforms, such as smartwatches and head-mounted mixed reality displays, demand new input devices for high-fidelity interaction. We present AuraRing, a wearable magnetic tracking system designed for tracking fine-grained finger movement. The hardware consists of a ring with an embedded electromagnetic transmitter coil and a wristband with multiple sensor coils. By measuring the magnetic fields at different points around the wrist, AuraRing estimates the five degree-of-freedom pose of the ring. We develop two different approaches to pose reconstruction—a first-principles iterative approach and a closed-form neural network approach. Notably, AuraRing requires no runtime supervised training, ensuring user and session independence. AuraRing has a resolution of 0.1 mm and a dynamic accuracy of 4.4 mm, as measured through a user evaluation with optical ground truth.

Farshid Salemi Parizi, Eric Whitmire, Shwetak Patel

Wearable computing platforms, such as smartwatches and head-mounted mixed reality displays, demand new input devices for high-fidelity interaction. We present AuraRing, a wearable magnetic tracking system designed for tracking fine-grained finger movement. The hardware consists of a ring with an embedded electromagnetic transmitter coil and a wristband with multiple sensor coils. By measuring the magnetic fields at different points around the wrist, AuraRing estimates the five degree-of-freedom pose of the ring. We develop two different approaches to pose reconstruction—a first-principles iterative approach and a closed-form neural network approach. Notably, AuraRing requires no runtime supervised training, ensuring user and session independence. AuraRing has a resolution of 0.1 mm and a dynamic accuracy of 4.4 mm, as measured through a user evaluation with optical ground truth.